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GROUP PROPERTIES OF 2-SUBMODELS
FOR THE EVOLUTIONARY CLASS OF GAS-DYNAMIC EQUATIONS

E. V. Mamontov UDC 533; 517.958

Invariant 2-submodels (submodels with two independent variables) of the evolutionary class
are considered for the equations of gas dynamics with an equation of state of general form.
Group analysis of these submodels is performed. Allowable operators and transformations of
equivalence are indicated, and group classification is performed.

As is known, all invariant 2-submodels (submodels with two independent variables) of the equations of
gas dynamics reduce to one of the two following systems: the system of equations of the evolutionary class (E
class) or the system of equations of the stationary class (S class) [1, 2]. All such submodels are obtained for
the two-parameter subgroups corresponding to the subalgebras Lo, from Table 6 of [3] (below the numbering
from Tab. 6 is used in references to the corresponding submodel).

In the present work, the invariant submodels of the evolution class are analyzed within the frame-
work of the SUBMODEL program. The operators allowed by the system of a submodel and equivalence
transformations are indicated, and group classification is performed.

The equations of the evolutionary class (class E) are obtained from submodels 2.8, 2.9, 2.10, 2.20, 2.21,
2.22,2.23, 2.24, 2.25, and 2.27 and have the form

Ut+UU§+(b/R)P§:a1, Vi—i—Ungaz, Wt+UW§:a3, (1)
Rt+UR€+RU§ = Ray, Pt—i-UPg—I—A(R,P)Ug:A(R,P)a4,

where b = b(t) > 0, the functions a; = a;(¢,&, U, V, W) are linear or quadratic functions of the variables U,
V,and W, A = Rc® = —RSR/Sp, and the velocity of sound ¢ = ¢(R, P) is obtained from the equation of
state S = S(R, P).

The equation for entropy S becomes S; + USg = 0.

The invariant variables &, U, V, W, R, and P for each submodel are described in [2]. The choice of
these variable is not unique. Thus, in submodel 2.8, instead of the functions V, W one can introduce the
functions tV and £W. In this case, the right sides of the equations as and as become zero. This, however,
does not introduce a considerable simplification of the equations, and, therefore, in the present work, we use
the variables described in [2].

The Lie algebra operators allowed by the system are sought in the form
X = a0, + a0 + oYy + ¥ ov + oV ow + afor + o 0p.

All coefficients « are functions of the variables ¢, &, U, V, W, R, and P. The extended operator X is written
as

X=X+, + ...+ ("op,.
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Here

where
Dy = 0y + U0y + Vioy + Wiow + P:Op + RiOR, Dg = 85 + UgaU + Vgav + Wg@w + Pg@p + RgaR

(D¢ and D¢ are full differential operators).

Let us act on system (1) by the extended operator. After substitution of the expressions for the
coefficients ¢ and elimination of the derivatives Uy, Vi, Wy, Ry, and P, taken from system (1), we obtain five
equalities. Setting the coefficients at the quadratic terms with derivatives of Ug, Ve, We Re, and Pr equal to
zero, we obtain 2-equations, and setting the coeflicients of the linear terms equal to zero, we have 1-equations.
The remaining terms lead to 0-equations.

From the 2-equations it only follows that there is 2-autonomy (by the nomenclature of [4]): af = af(t,£)
and of = al(t,€).

From an analysis of the 1-equations it follows that

of =al(t), af=0af(t¢), oV =af+U(af—a})
o’ =aV(t,§,V,W,R,P), oV =a"(t,§,V,W,R, P),
ot = Rak + R(2a! - 2a§ + (be /b)), o =af(t,¢, P), Aabp =0,

Apa” + Aga® — AaB =0,  Aa} + Ral =0, Aol + Raly =0.

If A=0, then of = af(t,&, P), oV =aV (t,&,V,W, P), and o'V = oW (t,£,V, W, P).
If A#0, then o = fP(t,&)P + g (t,¢).

Instead of the variables R and P we introduce the variables R and S, where S is any function that

satisfies the equation Sy + USe = 0 (in particular, entropy). Then af = 0 and a‘g = 0, whence o =

aV(t,&,V,W,8) and o'V = ' (t,€, V, W, S).
The 0-equations have the form

(b/R)aéD + U%U —a1af + of +a1af) — (e + argat + arpa’ + ava’ + anwa') =0,

ay — agaf + Uaé/ + agag + aga% — (agtat + a2§a5 + azUaU + agvav + agwozw) =0,

afV — azal + Uozgv + agoz%//v + aga% — (azat + aggaf + aspa? 4+ agya + agwaw) =0, (2)

Oé? — RCL40¢§ + UOzéDL + Rag — R(a4tozt + (Z4§Oz5 + CL4U04U + a4vav + a4waw) = 0,

of + Uaf — Aagal + Aag — Aaga’ + agea® + agpa? + agya + agwa™) = 0.

To obtain equivalence transformations, we supplement the initial system (1) with the equations A; =
A¢ = Ay = Ay = Aw = 0. The equivalence transformations operators are sought in the form

X¢=a'd, + agf)g +aP%0y + "oy + Vo + affor + aPdp + atd.
All coefficients « are functions of the variables t, &, U, V., W, R, P, and A.
Let us introduce the full differential operators
Di = 0y + U0y + ViOy + ... + (ArRy + ApP;)0a,
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DE = 35 + UgaU + Vgav +...+ (ARRg + APP,g)aA,
13;6:8t7 25/22857 fD\gzaUv b\éza‘/7
l?f;?,:@w, b\gzaR—i-ARaA, /15%:8P+Ap8,4.

The coefficients of the extended operator
Xe=X+CYoy, +...+ CRedp, + MO, + ...+ (RO,

are obtained form the formulas

¢fe = Dga”t — Ry D (') — ReDg(ab),
¢ = Dia® — AgDf(a") — ApDj(a

¢AP = DSa — ApD%(af) — ApD%(ah).
Let us act on the system by the extended operator. After elimination of the derivatives Uy, V;, Wy, Ry,
and P;, we have 10 equalities. Setting the coefficients of the cubic terms with derivatives of Ug, Ve, We, R,
P¢, Ag, and Ap equal to zero, we obtain 3-equations, and setting the coefficients of the quadratic and linear
terms to zero, we obtain 2-equations and 1-equations, respectively. The remaining terms give 0-equations.

From the 3- and 2-equations it follows that
ot =al(t,€), ot =af(t,€), o’ =a"(tL,E U VW, R P), o =a"(t,E,UV,W,R,P),

oV =V (t,6,UV,W,R,P),  af =af(t,6,U,V,W,R,P),
of =aP(t,&,U,V,W,R, P), o = o?(R,P,A).
An analysis of the 1- and 0-equations shows that
¢

of =al(t), of =af(t,€), oV =af +U(af—af),

oV =av(t, &, V, W),

o =aV(t,6,V,W), off =CiR+2R(a} — af) + R(by/b)a’, of =C1P+Cy, ot =C1A.

The remaining 0-equations become
W _ o,

agj — alai + Uag + alag — altat — algozg — aonzU — alvav —awa
oz,Y + Uag + agag + aga% — agai — agtOét — aggaf — agUaU — agvav — agwaw =0, 3)
a}fv + Uagv + aga‘Vy + aga% — agaﬁ — agtat — CL3§O{£ — agyaU — agvav — agwaw =0,

a? — agof — (ago’ + Cl4gaE + agpa? +agva’ + a4WaW) =0.
Let us analyze the 0-equations of (2) and (3) for each submodel. To describe the results, we introduce

the operators
Z1 =0, Zy= 85, Z3 =10 + 585, Zy = t0; + 585 —Voy, Zs= tag + Jy,
Zo =t0p + £0c —tW 0y, Z7 =10+ Oy + ady +tdw, Zs= (a®+1)dy + atdw,
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Zy = t20 + 2ty + atdy + (t* = 1)ow, Ziwo = NV, W)dv, Zijy=0v, Zi5=Wo,
Z1 = p(V,W)ow, Zi;=0w, Zi{i=Vow, Ziz=f(EW)0y, Ziy=0v,
Ty = NEW + V,W) By, Zia = p(tW + V, W)ty — dw), Ziy— tdy — O,

Zhs = (L OV AW) Oy, Zig = (1/O)pV,tW) 0w,  Ziz = (1/H)AQRXV — atW, W) dy,
Zig = p(tV — atW, W) (adv + 0w ), Zig = (1/t)f(EW)Ov, Zig= (1/t) 0y,

at — Bo Ot — art

Zoo = (1/t) f(tV,EW) By,  Zo1 = t0e + Oy + P — Oy + Py p— ow,
I = (Z;—_aﬁ: % o _(?Qt)—_a]r;T — % + 12 jar O — 12 —tar O
203 = fza—_aaTt % e _(f;)—_UtT()ﬂQU = % = t2 —t oT O+ 12 fUT Ow,

Zu = fg—_c;’oj‘t O~ th?(t; 2—04:75'; = % — 12 iTUT I+ t2 itm’ O
= Gy e TG v o T

which belong to the kernels of the allowed groups, and the “extending” operators

Yi = ROg + POp, Yo =0p, Y3=—t0,+Udy —2R0r, Yi=E&0:+Udy —2R0p,
Vs = £0c + Udy + Wow — 2ROg,  Ys = —td, + Udy + tWdy — 2RO,
Y7 = t0; + €0¢ + 2/ (1 + t*)(ROR + POp), Ys =120, + t£0¢ + (£ — tU)dy — 3tPOp — tROR,

Yo = t20; + t&0¢ + (&€ — tU)dy — t*°Wdy — 3tPIp — tROR,

Yip = t20; + t€0¢ + (€ —tU)dy — t(V — aW)dy — 4tPOp — 2t ROR,

Y1 =0 — (1/t)((V — aW) dw + RO + POp),
Vi = 120, + t€0¢ + (€ — tU) Oy — tWw — 2tROR — 4tPOp,

Yiz = t20; + t€0¢ + (€ — tU) Oy — tV Oy — tWow — 3tROR — 5tPop,

Yig = (2 4+ 1) 0y + t&€0¢ + (€ — tU) Oy — 3tROR — 5tP0p,
Yis = 0, — 2t/ (1 + t*)(ROR + POp),  Yig =8, — (1/t)(VOy + ROr + POp),

Yir = 8, — (1/t)(VOy + Wow + 2ROk + 2P0p), Y, = Rg'(P)0r + g(P) dp.

Here «, 3, 0, and 7 are parameters of the subalgebra series and f, g, A, and p are arbitrary functions.

The kernels of the allowable algebras (intersection of the algebras allowed by systems with different
functions A) are given in Table 1. It is known that the kernels contain normalizer factors, which are computed
directly from the subalgebras generating the submodel [3]. The extension of the normalizer factor in a kernel
is indicated in last column of Table 1.

For special equations of state, extensions of the kernel of the allowable algebras are possible. Tables 2
and 3 give all possible extensions (F' is an arbitrary function).
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TABLE 1

Submodel Normalizer factor Supplementary
operators
2.8 Zs3, Zig Z2o
2.9 Z1, Z3, Zis YAD)
2.10 Zy, Ziy VAT
2.20 Zo, Lo, Loz, Za3, Laa, Zas —
2.21 Za, Zs Zho, Z11
2.22 Z2, Z3, Zs, Ziy, Zi6, 216 — Z11 Z15, Z16
2.23 Za, Zr, Zg, Zy -
2.24 Zo, s, Zs, alis + Z11, Z1g Zh7, Z1s
2.25 Zh, Za, Zs, Zis, Z14 Ze, Z13, 214
2.27 2y, Z2, Z3, Zs, Zo, Z11, Z16 — Z11 Z10, Z11

For completeness of the consideration, we give:

1) the coefficients of the submodels considered;

2) equivalence transformations for them.

Submodel 2.8

)b=1,a1=W?2%/¢ ag = —V/t, a3 = —~UW/E, and ay = —(1/t + U/€);

2) & = q&, U = qU, W* =W, P* = 2¢3(P + q3), R* = @2R, and A* = 22 A.

Submodel 2.9

)b=1,a; =W?/¢ ag = —BW/E, ag = —UW/E, and ay = —U/§;

2) & = q&, U* = U, V* = 4V + gsh(§W, B), W* = W, P* = 2P + g3, R* = ¢, >R, A* = A,
and 3* = ¢4 (h is an arbitrary function).

Submodel 2.10

Hb=1,a1 = W23/, ay =W/ () = V/t, a3 = ~UW/E, and ay = —(1/t + U/€);

2) 5* = Q1§7 U* = qu, W* = qlW, R* = qQR, P* = QQQ%(P + Q3), and A*f = QQQ%A

Submodel 2.20

1) b =1+ ((Bo—at)/(t? —o1))® + ((ar — Bt)/(t? — 07))%, a1 = (2/A)[(—(a® + 33 + af(o
+1)t2 — (28%0% 4222 +or(a?+ 32 t+afor(o+7))) U+ (att — 280> + B(—p%c + 20°7 + o?7)t
+ a(FPor — a27? — 2V + (Bt — 2a7t3 + a(207? + BP0 — o*n)t + Bo(aPt — [P0 — oT?))W],
az = (1/A)[((t? — o1)(1 — o)(aT — Bt))U — (£5 + (a? + 32 — 207)t3 — aB(30 + 7)t* + 0(26%0 + 072 + a7
— B2t + aBor(c — 1))V + (7t + (®7 + B0 — 207%)t? — dafort + or(om? + o’ + [%0))W],
az = (1/A)[(t? — o7)(at — Bo)(T — o)U + (ot* + (30 + a1 — 20%7)t? — dafort + o7(a®T + o7 + %0))V
— (5 + (a® + B — 207)t3 — aB(oc + 37)t2 + 7(2a%7 + o*r — a?o + (o)t + aBor(c — T))W],
ay = —2t/(t? —o7), and A = (t?* — o7)[(t? — 07)? + (a1 — Bt)? + (at — Bo)?];

2) P*=qP+q, R"=qR, and A* = g1 A.

Submodel 2.21

b=1,a; =ay=az =0, and ay = —2t/(1 + t?);
2) P*=qP +q, R* = qig3R, and A™ = g3 A.
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TABLE 2

A Submodel
2.8, 2.10 2.9 2.20, 2.23
PF(PR™) | (y—1)Ys+29Y3 (y = 1)Ys + 29Y3 —
PF(PR™") Y Y Yi
F(P) Ys Vs —
PF(R) 2Y1 + Y5 21 + Vs -
’yP Yl, Y5 Yl, Y5 -
P Y1, Y5, Yie — -
(5/3)P Y1, Ys, Yis — —
2P — Y1, Y5, Yia —
3P — — —
F(Re™ ") Ys — 2Y> Ys — 2Y2 —
F(R) Yo Yo Y
YR Ya, (v = DYs +29Y1 | Yo, (v — 1)Y5 + 2913 Y>
R Y1, Yo Y1, Ya Y1, Ys
1 Y, Vs Y2, Ys Y
0 Y57 YQ )/57 Ytq Yg
TABLE 3
Submodel
4 ubmode
2.21 2.22 2.24 2.25 2.27
PF(PR™7) | (vy-1)Yat (v = 1)Ya+ (v = 1)Yat (v — 1Y+ (v —1)¥Ys+
+29Y1 +29Y +29Y +29Y1 +29Y1
F(P) Y,y Yy Yy Y3
PF(R) 21 +Y, 21 +Y, 21 +Y, 2Y1 + Ys 2Y1 +Ys
yP Y1, Y, Y1,V Yi, Vs Y1, Y6 Y1, Vs
P Yi, Ya, Yz, Yis Y1, Yy, Yir Yi, Yy, Yu
(5/3)P Y1, Yy, Yiu Y1, Yy, Yis —
2P — — Y1, Ya, Yio
3P — — — Y1, Ys, Yo Y1, Y3, Ys
F(Re ™) Yy —2Ys Yy —2Ys Yy —2Ys Y — 2Ya Y3 — 2Ys
F(R) Ya Ya Ys Ya
VR Yo, (v = 1)Yat | Yo, (v = DYat+ | Yo, (v — DYat | Yo, (v = 1)Y¥e+ | Y2, (v — 1)Ys+
+2vY1 +2vY1 +2v11 +2v1 +2vY1
R Y1, Yo Y1, Yo Y1, Yo Y1, Yo Y1, Yo
1 Ya, Ya Y2, Ys Y2, Yy Ya, Yo Y2, Y3
0 Vi, Y, Vi, Y, i, Y, Yo, Y, s, Y,
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Submodel 2.22

Db=1,a1 =0, ay =-V/t, a3 = —W/t, and ag = —2/t;
2) & =&, U* = U, P* = 23 (P + @3), R* = 2R, and A* = qo¢P A.

Submodel 2.23

b =1+a®2+t a = 20U + atV — (1 + AOW)/(1 + a® + t?), az = a(tU + atV
—(1+a®W)/(1+a?+12), a3 = (1 +t)U + (1 +t2)V —a?tW) /(1 + a? + t2), and a4 = 0;
2) P*=qP+q, R"=qR, and A* = g1 A.

Submodel 2.24

1)b=1,a1 =0, a2 = =V/t+aW/t, a3 =0, and ag = —1/t;
2) & = q& U* = qU, R* = @R, P* = a¢3 (P + ¢3), and A* = g{ A.

Submodel 2.25

1)b=1,a; =0, a3 =—W, and a3 = a4 = 0;
2) t* =qit, U* = q; 'U, W* = i 'W, R* = (q1 + @2)R, P* = ¢2P + g3, and A* = g A.

Submodel 2.27

1) b=1and a1 = ag = a3 = ag = 0;
2) t* = q;'t, U* = U, R* = @aR, P* = (¢} + q2) P, and A* = (¢} + q2) A.
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